BUILDING THE FUTURE-PROOFED AND EFFICIENT DATA CENTRE

Faced with surging demand for cloud-based services and data storage, fuelled by the rapid pace of digitisation, rising affluence and an increasingly tech-savvy young population, big corporations are expanding their cloud infrastructure footprint.

CLOUD-DRIVEN EXPANSION

Such expansion activities, especially in Singapore, Indonesia and Malaysia, will make Southeast Asia the <u>fastest growing region</u> for co-location data centres (DCs) globally. Its market size is expected to grow by a compounded annual growth rate of 13% between 2019 and 2024. Overall, the market size for Asia Pacific co-location DCs is forecast to be around US\$28 billion by 2024. DC construction had kept up over the second half of 2019, in particular, over key regional data centre markets, with local cloud spend being the common theme.

<u>A study by IDG</u> found that about two-thirds of companies already store at least some of their data in a co-location centre. Even among organisations that rely exclusively on on-premises facilities, over 70% have made plans to migrate some data into a co-location facility. With growing server visualization and cloud deployments, the flexibility and reliability of co-location centres enable organisations to utilise the high-performance resources of third-party facilities while also maintaining control over valuable assets as well as power and cooling requirements.

Often referred to as co-location DCs, <u>multi-</u> <u>tenant DCs</u> (MTDCs) configure and physically connect network services to a new enterprise tenant quickly and efficiently. They provide the required cabling infrastructure to support multiple generations of equipment and speeds. Specifically, organisations have ready access to high-density, low-optical loss cables; simplified infrastructure management; and floor-mounted fibre entrance cabinets to maximise density.

5G IMPACT AT THE EDGE

The advent of 5G, the fifth-generation cellular network technology that exploits new spectrum and provides single-digit millisecond latency, will alter how DCs are designed and operated. By some estimates, DCs will be spending over half their operating budget to <u>support 5G</u> by 2025.

Amid rising demand for 5G-driven cloudscale services, high-performing MTDCs may be re-located closer to the network's edge where the users, data and connected devices are. The move is to fulfil the low latency and reliability requirements of applications that 5G will enable, such as self-driving vehicles, industrial automation, machine-to-machine communications and more. Innovative solutions needed to support these applications include a flexible migration platform; pre-terminated fibre and copper connectivity; and an <u>automated infrastructure</u> <u>management</u> (AIM) solution.

RISK-FREE MIGRATION

The ability for DCs to support 25G/40G/100G and beyond, with up to five 9s of availability, is non-negotiable for today's hyper-connected and always-on digital businesses.

CommScope's <u>High Speed Migration</u> platform uses modular building blocks to support the growing speeds and densities that new applications and architectures demand. The platform is complemented by the <u>SYSTIMAX</u> portfolio of connectivity and structured cabling solutions to deliver agility, manageability and scalability for growth.

For example, space-saving high-density (HD) and ultra high-density (UD) panels provide up to 72 duplex Lucent Connectors (LCs) or 48 Multi-fibre Push On (MPO) ports per rack unit (RU) – singlemode or multimode – to align with the high density of fibre ports in the spine switch layer of today's leaf-and-spine networks.

Pre-terminated and pre-tested fibre assemblies increase deployment speed and accuracy. Ultra low-loss, pre-terminated components for singlemode and multimode enable longer link spans and support for attenuation-sensitive applications.

CommScope's <u>imVision AIM solution</u>, available with HD and UD panels, enables DCs to monitor and manage infrastructure at port level and in real time. imVision automates the planning, implementing and documenting of moves, adds and changes; accelerates mean time to repair; and triggers alerts in real time to unplanned or unauthorised changes in the physical layer.

As enterprise and co-location facilities continue to grow in comlexity, the ability to pivot quickly and easily to take advantage of new market opportunities starts with the right physical layer infrastructure and an experienced partner who can help build it.

CommScope is maximising efficiency and performance in MTDC deployments with copper and <u>fibre infrastructure solutions</u> as well as insightful AIM. Spaces are also enhanced through optical distribution frames and <u>fibre raceway solutions</u> for outside plant (OSP), entrance facilities, meet-me rooms and cages. These aside, CommScope's alliances with <u>top-performing MTDC providers</u> ensure that DC efforts drive business needs.

SUCCESS STORY: EQUINIX, GLOBAL

COMMSCOPE AND EQUINIX DEMONSTRATE POWER OF MTDC ALLIANCE

Equinix has maintained pole position across Asia, Oceania, North America, and EMEA for seven consecutive <u>Cloudscene Data Centre</u> <u>Ecosystem Leaderboards</u> based on connectivity and density of its DCs.

After collaborating on numerous MTDC projects, Equinix became the first partner to sign on to CommScope's MTDC Alliance, a cooperative programme that now includes six of the largest MTDC providers and nearly 100 service, installation and integration partners worldwide.

Equinix provides MTDC space and interconnection services for the world's top forex service providers. In forex trading, ultra-high speed platforms move trillions in trades across the globe daily. In every network link connecting institutional traders to their markets, milliseconds mean millions.

Trading partners look to forex platform providers to provide latency equalisation for a level-playing field. CommScope helped one forex service provider to upgrade the links from its trading partners' data centres to a matching engine and ensure identical latency performance, regardless of location. The platform's matching engine was in one building; the partners were in two separate buildings.

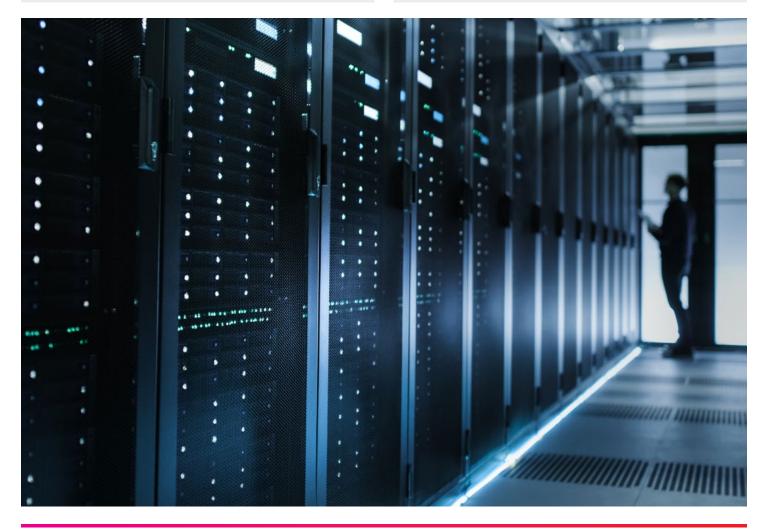
SOLUTION

The project entailed installing an underground OSP without the ability to test before deployment. And so, CommScope had one shot to get it right and a short timeline of a few weeks to install and turn up the intra-campus links.

As CommScope engineers worked through the technical issues, Equinix focused on logistics and ensuring the service provider's team was kept up to date. The solution consisted of multiple runs of high-count ribbon fibre, rack-mounted fibre panels, and connector assemblies. In addition to the

SUCCESS STORY: EQUINIX, GLOBAL

precise measurement of the spooled cabling, the end-to-end optical distance of each link had to be precise.


A highly sensitive optical backscatter reflectometer (OBR) was used for precision measuring of in-building equidistant links. One trunk cable each was terminated inside buildings A and B, and one at the customer's matching engine where both cables were terminated at the OBR.

The project reaffirmed the value of working partnerships such as those between CommScope and Equinix, and within the MTDC Alliance.

The forex service provider's infrastructure is now deployed on Platform Equinix, a colocation and interconnection platform that places strategic controls closest to users, clouds and networks. The company can connect with other trading partners for decreased latency, and scale the business up or down based on shifting market needs.

BENEFITS

The successful project demonstrates that latency equalisation in the OSP is doable.

